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For such a class of potentials, the T-matrix equa-
tion reads

T, %) =21 Arop (KR + 2 ¢ Arop(k)

di v2®TER)

(2m?® E;- Ep+i€ ° (B4)
Introduce the auxiliary notation
@) TE K
s () / @n? E*— Eq+ie ’ (B52)

which gives for (B4)
T(E" E)=Er ArUr(E’)UF(E)+2r Arvr(ﬁl)xr(-ﬁ) .
(B5b)

From (B5b) it is possible to derive a system of
linear equatlons determining the xr(ﬁ) Multiplying
(B5b) by v (k')/(Eg - E; + i€) and summing over

k’ one gets
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4
at’ o (K T(k', k)
(2m)® Eg- Ep +i€
_ won [ Ak’ o (K )op (k)
—%}Arvr(k)f (2n)® "E;- Ep + i€
vx"‘l(k yor(k') dk’
= ST o B
+2Arxr(k)/ — Ep+ i€ @n® (B6)
which can be written as
s, (R)= Br, (B)+ 5 Arr, (021 (K) (B7a)
where
= dk’ v (K )op (k')
= B7b
Arr, (K)=4r | oy E;- Ep+i€ ’ (B7b)
Br (R)=20r v¥(®)Arr, (K) . (BTc)

Equations (B7) and (B5b) provide the exact solutions
for the 7' matrix.
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Harrison’s pseudopotential approach for noble and transition metals is generalized to discuss
the corresponding alloys. In the noble-metal-based alloys, d-band effects are shown to be in-
cluded in an effective nonlocal potential, the scattering equation for the pseudo-wave-function

still being free-electron-like.

In transition-metal alloys, s-d mixing and s-s corrections are

introduced in a perturbative scheme, to the pure d-d scattering problem described in the tight-

binding approximation.
induced s-d mixing are clearly separated.

I. INTRODUCTION

In a previous paper! (referred to as I) the case
of non-noble-, non-transition-metal alloys was
discussed within a pseudopotential approach, paying
special attention to node effects. In that case the
electronic structure of the host was characterized
by a broad conduction band and a set of atomiclike
narrow bands derived from inner-shell states
(Fig. 1). The node effects discussed there involved
essentially orthogonalization effects introduced by
the extra atomic states associated with the impurity
(cf. Fig. 1).

In both cases the contributions from host-metal-induced and impurity-

The main difference between noble, transition,
and normal metals lies in the existence of a d band
(filled in the case of noble metals and partially
filled for the transition metals) in the neighborhood
of the Fermi level (cf. Figs. 2 and 3).

These d states introduce further difficulties in the
discussion of the alloy electronic structures even
in the absence of node effects, so in this work we
restrict ourselves to the simplest case of dominant
charge effects. The pseudopotential theory for
noble- and transition-metal hosts has been recent-
ly discussed by Harrison, 2 and the main point of
the approach is to realize that tight-binding sums
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FIG. 1. Non-noble, non-transition-metal
case (schematic).
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constructed from atomic d states are not exact
solutions of the complete crystal problem. From
Harrison’s developments it follows that for noble
metals, for instance, s-d mixing effects appear to
play an important role for states near the top of the
tight-binding d band. It is expected, then, that
impurity-induced rearrangements of the d density
of states near the top of the d band may have im-
portant consequences in discussing isomer shifts.
It is the purpose of this work to generalize the
methods discussed in I to the case of noble and
transition metals. At this point it is important to
distinguish clearly the approaches to describing
noble and transition metals. In fact, in noble-met-
al cases one has for the states in the neighborhood
of the Fermi level (and these are the important
states for alloying purposes) a dominant s-like
character, d-band contributions appearing only
through s-d mixing effects. On the other hand, for
the transition-metal case the dominant contribution
comes from d-like states obtained from tight-bind-
ing sums as far as host and alloy cases are con-
cerned.?

It seems natural then in the case of noble metals
to use an equivalent problem approach where the
d-d scattering and s-d mixing effects appear as an
effective nonlocal potential, introducing scattering
on the plane-wave states. On the contrary, for
transition-metal alloys, one expects that s-d mix-
ing effects appear as a perturbation to the pure d-

DENSITY OF STATES
4 P/ATOM

"'Iﬁoq 4”«2 ’zhxn

d-STATES

alloy scattering problem as defined previously, 3

so one obtains for the alloy problem a close paral-
lelism between this case and Harrison’s transition-
metal-host problem.

To summarize: For noble-metal alloys again
one starts by defining the “true” scattering prob-
lem, the corresponding pseudo-wave-function, and
the effective impurity potential. The main differ-
ence from normal metals is provided by this effec-
tive potential since now the effects of d-d scatter-
ing and s-d mixing are all incorporated into the
potential, the scattering equation for the pseudo-
wave-function remaining free-electron-like as in
normal metals.

A quite different approach should be used for
transition metals: One starts with the pure d-d
scattering problem defined in terms of tight-binding
sums as the zeroth order terms®; s-d mixing is
then allowed to introduce corrections exactly in the
same way as in its pure-metal counterpart.! In this
way in the limit of zero impurity perturbation one
recovers Harrison’s pseudopotential description of
the transition-metal host.

II. FORMULATION OF IMPURITY PROBLEM FOR
NOBLE-METAL CASE

We start by defining the alloy wave function, as-
suming from the beginning that node effects may be
disregarded. The case of impurity and host be-
longing to different rows of the Periodic Table may

FIG. 2. Noble-metal case
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be handled along similar lines to those developed
previously (see I); the only difference in compari-
son with normal metals is that d states must be in-
cluded in considering the node effects. We define
the “true” scattered wave function |¢¢) as a solu-
tion of

(T+V+U)| )= E¢| %),

which must satisfy the following requirements:

(i) The scattered wave function must be orthog-
onal to all inner-shell states (assumed here to be
identical to those of the pure metal):

(alyi)=0

for all states |a).
(ii) It reduces in the limit of zero perturbation to
the host-metal value:

lim| ¢ )=|4) as U=0. ®)

(iii) It shows an outgoing behavior typical of the
scattering problem.

A very convenient way of writing |y;) is pro-
vided® by expanding in terms of an overcomplete
set of plane waves and tight-binding d states. In
doing so, one automatically fulfills condition (i)
since for

[4)=1-

@)

@)

|a><a|)i¢k>+)_, a?la"y, @

one has (a| ¢i>=o for all states | @) since tight-
binding states |d’) are orthogonal to the inner-shell
states | @) ({ald’)=0for all la), 1d')). Expres-
sion (4) is formally similar to Harrison’s wave
function for the pure noble metal, but here the de-
termination of the {a}} coefficients involves the so-
lution of a pure-d impurity problem as will be dis-
cussed below. The existence of admixed d states
in the pure-metal case is connected? with the fact
that tight-binding sums constructed from atomic

d orbitals are not exact solutions of the crystal
Schrédinger equation. The mixing arises through
a potential defined by Harrison as

Ald)=6v|d)-(d|6V|d) |a) (5)
the potential 6V being the difference between the

actual self-consistent crystal potential V and an
“atomic” potential V,, from which the d states are
derived.

The role of d states in the impurity problem for
noble metals may be understood physically in the
following way. Suppose there is a repulsive poten-
tial, for instance. When acting on d states, this
potential, depending on its strength, may pile up
states at the top of the d band or extract a d bound
state above it. In both cases, because of s-d mix-
ing [impurity induced or through the mixing poten-
tial (5)], one has an enhancement of the d character
at the Fermi level or the appearance (in the case of
d bound states) of a virtual bound state. These
ideas will become clearer with the calculation of the
{a$?} coefficients and the definition of the equivalent
equation. Now we proceed with the details of the
calculation of {a'"’}. Substituting (4) in (1), one
gets

ﬂ

(T+ V| 01 =20 Eof @) (af 01+ 25 az?(T+ V)| ")
+UQ-=-20 Ia)(a|)|¢k)+2 agP uld')
= E;| ¢>§> EE\ a)(al ¢>;>+Z Egaf , (6
where in the absence of node effects we used
T+ V| a)=E,[a) . ()

Now Eq. (6) must be multiplied by a particular d
state in order to obtain an equation determining a%"
In doing so we use the following relations derived by
Harrison?;

@ T+V|pg)=E\d| o) -(d|a|e}t), (8a)
which follows from

(T+ V)| d)=E,|d)-ala), (8b)
where

E,={d|T+V|d), (8¢)

the mixing potential A being defined by Eq. (5).
1t follows also from (8b) that
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LA - ? A "
@|T+V|d") =E 840 - @] ald’) (8d) ag= - (] 62) +(dEl l;ﬁ;{) ' (13)
and a— L%
2 ag{dlald’y =0 (8e). Substituting (13) into (4) one obtains the pure-met-
a* al “true” wave function

for any ¢ numbers {a, }, using the tight-binding
approximations. Performing the calculation
through these steps one gets

d|T+V|o$y+ 2 ahuid| T+ V|d")
d'

Q-2 o) @])|op
+2 al$a|uld’y = Eg(d| o%) +Egal”, (9)
dl
where use was made of {@|d) =0 for any |a) and

|d). Using Eqs. (8a), (8d), and (8e), one rewrites
(9) as

E/d|o}) - @|a|9E) +Egag?
+@lva-Zla) Caplop
+2 a@@| Uld’) = Eg (@] ¢1) +Ezaj” . (10)
Rearranging terms one gets
(Eg - Eq)a" = (Eq - Eg)@| o%) - @[a] 69
+<d[U(1-:£la><a|)l¢§>+§ af{d|Uld’y (11)
or finally

- s\ (dlalop)
al” = - @] oty + LKL
da I k Ed“Ef

+(d|U(1-jm|a)(otl)I¢§)
E; -E,

1
T E;-E,

2 a@@|uld’y . (12)
d'

Equation (12) solved for the unknowns {a{"’} pro-
vides the solution of the first step of the equiva-
lent-equation approach for noble metals, since it
is clear from (12) that the {a{"’} are obtained in
terms of |$%), which when substituted into (6)
provide an equation for the scattered pseudo-wave-
function. This means that Eq. (12) incorporates
the solution of the pure-d impurity problem and
how d states mix with conduction states. In order
to get a better feeling of things involved in Eq.
(12) it is interesting to recover the pure-metal
limit derived by Harrison by just taking U=0 in
the equation defining the a$’’s. If one calls

|¢z) the pure-metal (U=0) limit of the scattered
pseudo-wave-functions and the corresponding co-
efficients {a,}, one gets from (12)

l4gy=(1-2 | @) <a|)|c>;>—§ @'y @’ |og)

1)@’ 1alog)
+dZ:: Ed' '—Eg

=(1-2 |a) (] —;3 la"y @' )| oz

1d"){d’1a193)
*,,Z, Eg-E - W

This expression provides a very simple interpre-
tation of the first two terms of (12). The first
term - {d|¢g) is just the orthogonalization contri-
bution of the d states as it occurs in the normal
metal, and as if tight-binding sums were solutions
of the exact crystal Hamiltonian, The second
term of (12) is then the mixing term responsible
for the occurrence of a d-like character in the
conduction states. It must be emphasized that if
V=V, (atomic d states exact solutions of the crys-
tal problem) then by (5) it follows that A=0 and
the wave function (14) is reduced to a normal-met-
al-type wave function.

Now we are in a position to discuss the meaning
of the remaining terms of Eq. (12). The third
term of (12) describes impurity s-d mixing, which
compares formally to the second term just by re-
placing the mixing potential A by the “reduced”
impurity potential U(1 -3, la){a|). Finally, the
last term describes pure d-d scattering, which is
responsible for piling up d states at the top of the
band or for the existence of a d bound state outside
the d band. Solving Eq. (12) for the coefficients
{af} is then equivalent to solving the pure d-d
impurity problem defined by matrix elements
@1U|d"). At this point we introduce for simplicity
the approximation of localized impurity potentials
for which (d|U|d’)= U, where U is independent of
d, d'. Within this approximation it is possible to
obtain a rather simple expression for the {a{"}
coefficients without disturbing significantly the
physics of the problem. It follows then from (12)
that

o=~ @ |opy 3 L1ALED
a* a’

a* a E'k'

5> @' 1UuQ -3, 0a)al)lod
a° E;—Ed,

~ 1
+ 02 ———2a'% . (15)
e« Ex—-E; 4 ¢

Introducing the function F(E) defined by
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F(E)=22,1/(E-E,),
it follows from (15) that

X af?-y = (-3 @' lon - LY

|
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@' =3, la){al)lof
Z E; - E, k) . (16)

Combining Egs. (16) and (12), in the localized-
impurity-potential approximation it follows fi-
nally that the coefficients {a{"} are

~

U

=—(d| o}

Y e (dlAl¢k>+<d|U -Yala){al) I¢>

E,- E; E; - E, " (B - B, )1 - UF(E;)]
et @1Al¢}) @ IUQ-F34l0) @!)Ip) 17
(-Zwlop DG AT Eg- ) -
[

Expression (17) can be rewritten in a more prac-
tical way if one calculates the total contribution
Yea’1d) of the d states to the scattered wave func-
tion. Using the approximation U=(d|U|d"), one
gets

gl (-Floul -2 525

Z [ @IUQ -5, la){al) ) (%)

E; -E,
2 |d){d|U
¢ (Ex — E,)[1-UF(E;)]

N Id')<d |A
x(-§ld><dr L3l

Zld')<d IU( -Emla)(al

Expresswn (18a) shows the connection between the
d-like part of the scattering wave function
Y¢as’|d) and the scattered pseudo-wave-function
|¢f). Whenl ¢#) is known, together with the
self-consistent impurity potential U, one obtains
directly the d part through the expression

2-4a%”|d) = (operator)| ¢3) , (18b)

on tight-binding sums and energies, core states,
and the impurity potential U. These equations are
also the central step for obtaining the equivalent
scattering equation for |¢¢) because of its special
form (18b). The next step is to obtain the equiva-
lent equation for the scattered pseudo-wave-func-
tion |¢#). To do this we return to Eq. (6), which
is now rewritten as

(T+V+2,(Eg -E,)|a)(a|]|od)
+22408" (Eg= A)|d) - 2, Egal®|a)

+UQ -2, |a)a])| o3 + 2408 U d)
=Ez|¢p) . (19)

Expression (19) is written in such a way that the
first three terms contain nonvanishing contribu-
tions in the limit U - 0 and the last two terms are
pure impurity effects. Now we calculate the terms
Yy a$(E,- A)|d) and 3,E;al"’ |d) using expression
(18); according to this expression, in §,a$" |d)
there are terms independent of U, which describe
pure-metal effects and the impurity-dependent
terms which we call 3,4 (U)|d). In the calcula-
tion of the above terms we insert explicitly for
Yd ad*’ |d) only the impurity-independent terms,

where the (operator) above is defined by the terms keeping the remaining terms as a$*’(U). In this
in large parentheses in (18a), which depend only way one gets
|
. 4 E, - A dla .
§a§’<Ed—A)id>=( E,- A)|ad) (@] + Z( 'd’< ’ ) E2% Ea” o= A)|d) . (20a)
d
(n ld)(dl o

7 Ezay?|d) =\ - 20 Eg|a){d| + E—“— | %) + Z)a (U)Ez| @) . (20b)
d d

Substituting (20a) and (20b) into (19) one obtains

<T+ V+ 2 (Ez- E)| a)(a[) | ¢§>+<-Z(E,,- A)| d)d| + 25 Eg| dXd| + 22

- E; - d .
(Ey Efk_ Ei)ldx |A> | 6%)

+ 2067 (0)(Eg = A)| @) - Za‘*’(u)Eld>+U<1 ElaxaI)lm y+Zavld) =Bl o). (1)
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The first two terms of (21) can be rearranged to
reproduce the pure-noble-metal pseudo-Hamil -
tonian derived by Harrison?; one obtains for these
terms

<T+ V+2, (Ep- Em)[ a)(a\

+ 2, (Bg=E)| a)d| + Zaa)d|
4 d

oD || o e T LAY 6 ger, | 03)
d
(22)
Using this result, Eq. (21) can be rewritten as

(Bz=305,)| 93) = UL = 2y | aXa])| ¢3)

+2.q4a5" (U)(Ey - Ez— A)| d)

+2.,a°U]d)y . (23)

ill. DETERMINATION OF EFFECTIVE IMPURITY
POTENTIAL AND EQUIVALENT SCATTERING EQUATION

The effective impurity potential is defined in the
following way:

|

U®| ¢}) = right-hand side of (23).

More explicitly one gets
vl op)-u(1-Z] e ) 41
7

| o)

( Ul d)d| + gl_dM_A_)

+ 2. &P (U)(Ey- Ez=a+U)|d), (24)
d

where in the last term of the right-hand side of (23)
the impurity-independent terms were separated
from the a}” (U) terms. It turns out from (24) that
the first two contributions to the effective poten-
tial are given by

U(1-Z (] —; ]d)(d|)+zd:% .

(25)
These terms do not involve explicitly the d-d scat-

tering which is contained in the last terms of (24).
Using Eq. (18), we calculate

Za(*) —E;—A+U)}d>=<z,

(E,— E;= A+ ) 1d)dIU ,
Z (2 Eo[l UF(E})] <‘§|d><d!

(Eg— Ez—A+ D) Id)dIU1 -3, la)(al)) | b3
d Ex-Eq k

% Id )(d 18 oz la’)d’ lU(l Ea'“><°‘”>| ¢1). (26)

- E,

Using (25) and (26) one obtains finally for the effective impurity potential

UP=U<1—Z | a)al —Z)ld><d.)+§ UldXdla o3 (E,—E;—=a+U)1d)XdIUQ =3, la){al)

E,- E;

.y (E~ A+U)ld>(dlU<
d

Ek)[l - UF(Ep)]

Using the U* defined in such a way, the scattering
equation for the pseudo-wave-function becomes

(Bz-3chy)| 020 =U"| o) (28)
or incorporating the outgoing behavior and the con-
dition

lim| ¢3)=|¢3) as U—~0,
one obtains the equivalent Lippman-Schwinger
equation:

|63)= o)+ Be—ichu+ie) UP|92) . (20)

When Eq. (29) is solved in terms of the impurity
potential U, using Eqs. (4) and (12) one obtains the
“true” scattering wave function. The self-con-
sistent solution is then obtained using the same
methods as in I.

SATAER

E; -

ld'Xd'la 1d)d'1v@ -3, 1 a)Xal)
Z d'_Ek ? E;-E, ) @)

e -

IV. INTERPRETATION OF EFFECTIVE POTENTIAL

The equivalent problem defined by Eqs. (29)
and (27) provides a clear picture of the scattering
mechanisms involving d electrons in the noble-
metal case. These mechanisms are all contained
in the effective potential since the effective scat-
tering equation is free-electron-like, assuming
as in I that | ¢;) is reasonably represented by a
single plane wave. From Eq. (27), one sees that
the matrix elements of U” between plane waves,
(k' IUPIk), involve several contributions (cf. the
Appendix).

To put our result in pictorial terms we introduce
the following elementary scattermg processes:

(a) the direct scattering from K to k’ in the pres-
ence of a reduction factor

1-2 |a)a| -2 |@y@])
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as in the case of normal metals without node ef-
fects (as it should be if tight-binding states were
exact states of the crystal Hamiltonian) (see Fig.
4); (b) bare scattering by the impurity potential
U (Fig. 5); (c) host-metal s-d mixing inducing s-
d scattering (Fig. 6); (d) the impurity-induced s-
d mixing effects, reduced by inner-shell orthog-
onalization (Fig. 7); and (e) the matrix elements
(kld) (Fig. 8). Using this notation it is possible

to describe the processes involving d-d scattering.

Typical examples are provided by the last terms
of (27).

In fact, an s-d mixing involving d-d scattering
can be depicted in terms of the processes repre-
sented in Fig. 9. The occurrence of the factor
1 -UF(E};) characterizes the usual d-d scattering
problem. From this factor one knows if there
exist impurity-extracted d bound states which ap-

pear in Anderson’s model* of the impurity problem.

Using this notation, the effective-potential
matrix elements can be analyzed as shown in Fig.
10.

V. FORMULATION OF IMPURITY PROBLEM FOR
TRANSITION-METAL CASE

A. Pure-Metal Results

At this point it is worthwhile to summarize Har-
rison’s main results for the pure-transition host.
If we call |d) the tight-binding sum corresponding
to d states, then the “true” wave function for en-
ergies in the d-like region reads

[d)=|d)y+ (1 =200 |@)a])|o®) , (30)

where the pseudo-wave-function | ¢) is defined as

|o)=2zaz|k) . (31)

Substituting (30) in the Schrodinger equation and
using (5), (7), (8b), and (8c), one gets for [¢)

(T+V)|¢)+206 (E-Ey)|a)(a|o)

—

— k/' — d
k k
or
4 —> b d
meaning <k' |U|k> and <d' |U|k>

FIG. 5. Rare scattering by the impurity potential U,

P qulam Y ey | - Zd 14Y < 4]) >

FIG. 4. Direct scattering
from % to £/, in the presence
of a reduction factor
1-YalaY{al =T 1d) @l) as
in the case of normal metals
without node effects.

+(Eq—-E-A)|dy=E|¢) . (32)

Equation (32) is now solved within a perturbation
approach in powers of the s-d mixing parameter
A; one starts from the following equation [obtained
substituting (31) into (32)]:

T2 - -
Z}a;, (%77 —E> ]k’)+; a;.V]k'>+§ ag(E - E,)
X k kK .o

x |ay(a|k’y+(Eg-E-A)|d)=0 , (33)
to obtain (for instance to first order in A)
ap = - (k|a|d)/ (s~ Be)
E; being defined as
E;=Kk%/2m + (k| W|K)

where W is Harrison’s? pseudopotential for noble
metals. It will turn out in the following that Eq.
(33) plays an essential role in incorporating bound-
ary conditions (zero-impurity potential limit) in
the scattering problem.

B. Definition of Impurity Problem

One starts incorporating in the problem three
different aspects. First, the orthogonality con-
dition involving the inner-shell states must be
automatically ensured; in the present case it will
be assumed that the impure-metal core states are
not very much perturbed by the impurity (charge
effects dominant). Second, since in the limit of
zero s-d mixing, Eq. (30) for |¢,;) reduces to the
tight-binding limit |d), the condition will be im-
posed that the scattering solution |3;) be the sum
of a dominant tight-binding-like solution of the im-
purity problem plus plane-wave corrections through
impurity- and host-metal-induced s-d mixing.
Finally, the new pseudo-wave-function |¢*) in-
volves also scattering requirements that imply out-
going behavior; also in the limit of vanishing per-
turbation it should reduce to the pure-metal limit
(involving only host-metal s-d mixing effects). In
conclusion, one describes the scattering problem
through

d
‘k’®/ _ L4l A ¥

Ed—E?

FIG. 6. Host-metal s-d mixing inducing s-d scattering.
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i/;(alu(l—z |°(><°<|)|_k)>

FIG. 7. Impurity-induced s-d mixing effects, reduced by

inner-shell orthogonalization.

40)=D alans (1- |aral ) 167 . @0

In Eq. (34) the coefficients a;?’ are the solution of
the pure-metal tight-binding scattering problem®
(cf. Sec.VC), and the scattering conditions read

al =80+ 00 (35)

where Gad(” describes scattering and reduces to
zero in the limit of zero perturbation. Quite
similarly the scattered pseudo-wave-function is
defined as

|6*y=2a$ k") . (36)
>

The coefficients a(” are defined as
a‘-") =ag. + Ga(” (37)

[the a;. being the solutions of (30) and (33)] and
correspond to the pure-metal limit. In these con-
ditions Eq. (34) can be written as

9= )+ (1= 2 fadal ) [0)+2 ol
+ (1—2 !a)<a|)‘
o k

Equation (38) shows the characteristic features of
the problem; the first term is the pure-metal d
wave function, the second and the third being, re-
spectively, the scattered d-like states and the
impurity admixed s-like states.

Finally, it should be emphasized that up to here
only scattering states are considered. If the im-
purity perturbation is strong enough to extract
d bound states from the d band, one should modify
the proposed wave function (38).

(38)

C. Definition of Tight-Binding-Impurity Problem

First of all we introduce the tight-binding Ham-

®
I

—_ I
o times

PSEUDOPOTENTIAL APPROACH FOR DILUTE... II 1175

—
K //d FIG. 8. Matrix elements (k|d).
——X

iltonian defined by }¢™® =T+ V,, V, being an atomic-
like potential, from which the tight-binding density
of states is derived. Now we introduce tne self-
consistent impurity potential U, which must be
determined at the end of the calculation. The pure
tight-binding-impurity problem is defined as

|a*y=|d)+(E-3"B+ie)ytUla’y (39)
with
|a*y=2a$ |a")y, af =08,+0a)
D
The general solution of the problem (39) is given
m Ref 3, and in the following the coefficients

a,,- will be supposed known as functions of U and
of the density of states of the tight-binding d band.®

D. Determination of Scattered Pseudo-Wave-Function
One starts from the usual equation
(T+V+D)[$)=E|9$) . (40)
Substituting (34) in (40) one gets

(T+V)| oY+ U|d") =22 (T+V)|a)(a|d*)
_UZ) |a)(a|o* >+Eaf;.’(T+V)|d >+Z)a‘”U|d'>
LalE|ld')+E|¢*) - EE|a><a|¢> (41)

Using Egs. (7) and (8b) one has

T (T+V)|a)(a|d'y=2 Eqg|a)(a]|o*y , (42a)
dz> aff:)(T+ V)Id'>=2 af:')(Ed"A)!d,) (42b)
. d’

Combining (41), (42a), and (42b) one gets

<T+V+§ (E-E,)|a)(a] ) [6%)

+U<1—Z£ |ay (a| >[¢")

FIG. 9. s-d mixing
involving d-d scatter-
ing.
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— —
K K
+ 7
——»—@ = +

e

+ 2 a$NEy-E-n)|d")
d'
+2a3N(Uld’y=E|¢" . (43)
dl

At this point it is very convenient to use (35) in
order to separate the impurity-dependent terms
of a$’; Eq. (43) becomes finally

(T+V+§ (E-Ey)|a) (| > |6
+(E4-E-0b)|dy-E|o*)
+U<1—§)|a><a|)|¢’>
+§ a3 (U)(Es —E-b)|d")
+dZ')af,‘.’U|d’)=0 . (49)

The first three terms of Eq. (44), being the limit
for zero impurity perturbation of the scattering
equation for the pseudo-wave-function, coincide
with the host-metal equation (32). The fourth term
describes s-s scattering induced by the “reduced”
impurity potential U(1 -3, la){a|). Finally the
last two terms are s-d mixing terms involving,
respectively, host-metal s-d mixing to scattered
d-states and impurity-induced s-d mixing.

E. Solution of Scattering Equation by a Perturbation Approach

We first substitute Eq. (36) into Eq. (44) and
define

Wo=V+23,(E - E,)| a)(a|
to get
J

~ 'k'n

k

FIG. 10. Effective-potential
matrix elements.

22 a(T+Wo-
k'

Ep|k")+(E,- E; - 8)|d)
+z‘,a<~>u<1-2|a><a|)|i'>
+E 8a ) (U)(Ey - Ez - A)|d")

+U|dy+25 8a(U)Uld"Y=0 , (45)
dl

where we wish to emphasize that the coefficients

8a ) (U) are known from a previous solution of the
problem defined by (39). Since the zeroth-order
solution of (45) must correspond to Harrison’s
determination of the s-d admixing coefficients ag,
of Eq. (37), we find from (45)

z ag (T + Wo— Eg)|K") + (Eg— Ez - 8)|d)=0 , (46)
k

the solutions being given by Harrison [first-order
solution is exemplified in (34)]. Now it remains
to determine the a$’ coefficients in (37) in powers
of the scattering potential. In order to do that one
should realize that the first two terms of (45) just
describe host-metal contributions, all scattering
properties being contained in the remaining terms.
Once one recognizes this, the first two terms may
be replaced by

E sa$)(Eq. - E9)|k’) | (47)

where Ej., E; are Harrison’s renormalized energies
due to s-d mixing. To summarize: One considers
the scattering of s-d renormalized states by the
impurity potential. Then to nth order in the per-
turbation U, one gets

5 50‘;’:’:""(E;~—E;)|E”)+E 6a({0').(n-1)U< 1-2 |a){a] > |k’

+Z} 6a ™ (U)(Eq. — Ez - b)|d’ >+Z baP-(U)U|d’y=0 , (48)
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where 6a$?™)(U) is the nth order term of the ex-
pansion of the scattering T matrix® in powers of
the impurity potential U. In expression (48),
ﬁa(i',).(m =ag+, the solution of the pure-metal prob-
lem as given by Harrison. Multiplying everything
by a state |k’) one gets

@) _ ) (=1) (k' 1UQ -3, la){al)IK"")
bag ‘:2’ b E; - Eq +i€

k'|E; —Ez—ald’)

5 (0)(n) ( d k

E @ U) g T e

l

|42y = Id>+<1—§ la><a|) |6)+2 baf(©)]a’)

(k 1uld’)

+E Ga(t)(n-l)(U) EE oy

, o (49)
where the outgoing conditions are incorporated
through the +i€ in the denominator ensuring that

D 6 (U)|k")
kl

has an outgoing behavior.

Finally, combining expression (49) with (38), one
obtains for instance, to first order in impurity s-d
mixing effects,

(g [, e EEHROED i
+(1_Z°‘;|a><al>|:;,'d Sa (l)(U) <k |E—4'E—'.E:z€A|d'> |E,>]

Expression (50) shows the essential features of
the impurity states. The first two terms are the
well-known host-metal incident wave and the pure-
metal tight-binding s-scattering terms. The third
term describes how already admixed s-like states
(through the coefficients ag..) are scattered by the

“reduced” impurity potential to other s-like states
labeled by Kk’ Hence, third terms are typically
s-s scattering terms. The fourth term describes
how host-metal s-d mixing couples scattered d
states, introducing then corrections to the pure
d-d tight-binding scattering states. Finally, the
last term gives the direct impurity-induced s-d
mixing of s-like states to the d-states.

VI. CONCLUSION

The noble- and transition-metal alloys, as the
pure hosts, are described within a systematic
pseudopotential approach, following Harrison’s?
scheme. In both cases one describes conduction
states starting from plane waves, tight-binding
sums, and imposing the orthogonality conditions
between conduction states and core states. The
choice of an overcomplete set of plane waves and
tight-binding sums characterizes the existence
of a d-band (filled or partially filled), in opposi-
tion to the non-noble, non-transition metals where
only plane waves are necessary.

It turns out, from the electronic structure of the
host, that the scattering wave functions for a
noble-metal-based alloy are drastically different
from those corresponding to a transition-metal

+<1-Za)|a><a|)[§ %IE')] . (50)

alloy. For noble-metal hosts, the d band is com-
pletely filled, or in a more rigorous form, the
states near the Fermi level are dominantly s-like.
On the contrary, transition metals are charac-
terized by a strong d-like density of states at the
Fermi level, so the dominant contribution comes
from the d-state tight-binding sums. These dif-
ferences are reflected clearly in the nature of the
scattering wave functions and the scattering equa-
tions they obey.

In the noble-metal alloys, the scattering wave
functions are dominantly s-like, with corrections
coming from host- and impurity-induced s-d mix-
ing. Consequently the pseudo-wave-function obeys
a Lippman-Schwinger scattering equation which is
free-electron-like, the existence of d-d scattering
and s-d mixing being entirely contained in the non-
local effective impurity potential. Once the scat-
tering equation is solved for the pseudo-wave-
function, both the s-like and d-like parts of the
conduction states may be derived. In transition-
metal alloys, since the d-like part is dominant,
one first solves a pure tight-binding impurity
problem in general form, 3 the effects of host-
and impurity-induced s-d mixing entering as per-
turbation corrections to this solution. At this
point we must emphasize that for transition met-
als care must be taken in this perturbation ap-
proach. In fact, for strong enough perturbations
and particular types of the tight-binding density
of states, d-band resonances may occur, and
bound states may be extracted.® If this is likely
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to occur for the impurity in question, the pertur-
bation approach may be highly questionable if we
are interested in states with energies around the
resonance or the bound state. In any case, one
has control over these features just looking at

the behavior of the pure-tight-binding solution
(more specifically looking to the d-state phase
shifts) corresponding to values of the impurity po-

(K'|UP|R) =(K" | UQ -2 | ) <al—§ |d) @) R +§
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tential close to the self-consistency.
APPENDIX

In order to complete the discussion of the effec-
tive impurity potential, it is useful to write down
the matrix elements of U between plane waves,
as calculated from Eq. (27):

(k" |UId) @] a1 k)
E,- E;

U(l-3, la) ()R

~T (K| @] 01 - T e ) - (K'1ald) @I

5 (" |U1d) (A1 UQ =S¢ la) (al)] B
d

E; -E,
N CALELULR:
1d"){d' |TUQ =T, @) {al)Ik)
Z E; - E, ) Za’

X <Z ") (@'[E) +
d'

E; -E,

|d><d'mk>

(k'1a1d)
Ed Ek

(dlu
1- UF(E;)

Eg - E;

(%

a4

(d|U
1-UF(E)

Z <k lUld)

~E; 2 |a' '

These matrix elements are important since one in-
troduces the complete set of plane waves

Zt|E><E|=1

in Eq. (29) in order to obtain a tractable equation
for the scattering T matrix, as discussed in de-
tail in I.

Finally, the orthogonalization procedure intro-
duces a “reduction factor” in the “bare” impurity
potential U, in the form U(1 -3, | @)a@l). In the
text, sometimes the “bare” potential appears as
inducing s-d mixing and d-d scattering. However,
the above reduced potential may be thought of as
acting in these processes also because

duva-2,|axa))|d)

> ld")(d'1alk) oy 1a'){d' U =3l @) {al)k)

)

Ei - Ed'

1d’)(d"1A k)
Ed' "Ek‘

[k)+ 2

a

1d)(d 1UA =Sl @) (al)Ik)
+Z E;-Eg

)

=(d| U|d"y =22, (d| U] a)Xa|d")
=(d|u|ad"),

(k| Ut - 2o | aXa])|a)
= (k| U|d) = 2, (k| U] aXa|a)
=(k|U|d) ,

a’

since d states are automatically orthogonal to the
a states. This should be compared to

(k| Ut = Zq | aXa|)|K")
=(k| U|K') -2, (k| U] @) (a|k")
# (k| v|k")

reflecting then nonorthogonality effects.
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